Abstract

This article reviews the example of using a geometric model of a hypersurface in multidimensional space on the Radishchev blueprint, which reflects interconnection between the four variables in solution of one of the tasks associated with structuring the technological process fulfilled by a welding robot. In structuring technological processes related to welding, it is necessary to solve the optimization task of determining the position of the foundation of welding robot relative to the welded brackets and the axis of the container of cylindrical shape. The welding process requires finding the most optimal welding robot, the geometric model of the kinematic chain of which would move the output link and welding head across all sections of welding seams. As an example, the author reviews the case when the robot is outside the cylindrical container, and welding objects inside and outside. For carrying out the optimization task, the author examines the correlation between the parameters that determine the position of the robot relative to the container, and the minimum possible vertical displacement of the center of the output link based on the graphic optimization model.  The multicomponent system comprised of the four parameters is studied based on the Radishchev blueprint. The author drew the combinations of curves that set the framework of curve lines of the dual level of the hypersurface in the four-dimensional space. For determination of the curves, the author found the combinations of projections of the dots on the Radishchev blueprint. The use of dual level lines on the Radishchev blueprint allowed determining most optimal position of the manipulator mechanism with regards to the cylindrical surface in welding the items for various industrial robots described in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.