Abstract

Understanding the performance of graphene devices in contact with highly concentrated aqueous electrolytes is key to integrating graphene into next-generation devices operating in sea water environments, biosensors, and high-density energy production/storage units. Despite significant efforts toward interpreting the structure of the electrochemical double layer at high concentrations, the interface between graphene-based materials and concentrated aqueous solutions has remained vaguely described. In this study, we demonstrate the use of graphene-based chemiresistors as a technique to indirectly quantify the experimental screening length of concentrated electrolytes that could clarify the interpretation of electrochemical measurements conducted at low ionic strength. We report a breakdown of the Debye–Hückel theory in the proximity of graphene surfaces at lower concentrations (10–50 mM) than previously reported for other systems, depending on cation size, dissolved oxygen concentration, and degree of graphene defectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.