Abstract

The integration of heterogeneous two-dimensional materials has the potential to yield electronic behavior approaching theoretical limits and facilitate the exploration of new fundamental physical phenomena. Here, we report the integration of graphene with two-dimensional, semiconducting crystalline silicon. Sequential deposition of carbon and silicon on Ag(111) in ultrahigh vacuum results in the synthesis of both lateral and vertical graphene–silicon heterostructures. The one-dimensional in-plane interfaces demonstrate atomically precise material transitions both structurally and electronically. The vertical heterostructures show noninteracting van der Waals behavior as shown by energetically resolved scanning tunneling microscopy coupled with ex-situ Raman analysis. The pristine and direct integration of graphene with two-dimensional, semiconducting crystalline silicon couples two of the most studied electronic materials into a hybrid structure with high potential for next-generation nanoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.