Abstract

Graphene quantum dots (GQDs) have been explored in recent years for electrochemical applications with considerable potentials. Here, we present GQD-doped CuCo2S4 nanocomposites through two-step hydrothermal process for supercapacitor electrodes. The surface of CuCo2S4 nanosheets changes from smooth to particles-accumulative shape, which assists the electrochemical cycling processes as well as the ion diffusion and charge transfer kinetics for improved supercapacitor performances. As a result, GQD/CuCo2S4 electrodes demonstrate a specific capacitance of 1725 F g−1 under a current density of 0.5 A g−1 and a cycling life of 10,000 cycles by retaining 90% of the energy storage capability. As such, this work extends the potential of GQDs in electrochemical applications by means of morphology change of CuCo2S4 nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.