Abstract
Lithium-rich Li-ion battery cathode materials possess the virtues of high specific capacities and high working potential, but the severe decay of discharge potential and capacity during repeated cycling hinders the practical applications. Herein, a Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCO) material is synthesized by a carbonate co-precipitation method, and then three graphene quantum dots (GQDs)-coated LMNCO materials with different contents of GQDs are fabricated by a solvent evaporation method, in which the GQDs are prepared by a solvothermal method. The GQDs-coated LMNCO material with 3 wt % GQDs demonstrates the best electrochemical performance. For instance, the discharge specific capacity at 0.2C rate is 270.3 mAh g–1. When the charge/discharge current rate increases from 0.2C to 5C, the capacity retention is 47.1%. After 150 cycles at 1C rate, the discharge capacity decreases from 184.2 to 159.4 mAh g–1, with the capacity retained at 86.5%. Surface coating with an appropriate amount of highly conductive GQDs can effectively enhance the electrical conductivity of the LMNCO material and promote the electron transport and charge transfer process and thereby improve the specific capacity and rate performance. Moreover, the GQDs coating layer can impede the side reactions of the active material surface with the electrolyte as well as the surface structure phase transition and therefore boost the cycle stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.