Abstract
Graphene oxide (GO), a pivotal derivative of graphene, has revolutionized nanotechnology with its tunable physicochemical properties and interdisciplinary applications in energy storage, environmental remediation, and biomedicine. Despite its exponential research growth, existing reviews remain fragmented, lacking holistic insights into evolving synthesis-application linkages, global collaboration patterns, and emerging convergence trends. This study bridges these gaps through a scientometric analysis of 14,124 peer-reviewed articles (2022-2025) from the Web of Science Core Collection, utilizing CiteSpace for co-occurrence network mapping, burst detection, and cluster analysis. Key findings reveal (1) a thematic shift from traditional synthesis optimization (e.g., Hummers' method) toward driven material design and sustainable applications like GO membranes for water purification; (2) China's dominance in publication output (38.5%) contrasts with the U.S. and Europe's leadership in global collaborations; (3) interdisciplinary journals such as Chemical Engineering Journal (centrality: 0.25) and emerging clusters like "circular economy" signal transformative priorities; and (4) critical gaps in scalability, ecological safety, and cost-effective production hinder industrial translation. This work provides a roadmap for aligning research with sustainability goals, fostering global partnerships, and accelerating innovations in scalable nanotechnology.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have