Abstract
Rationale: Graphene oxide (GO) based nanomaterials have shown potential for the diagnosis and treatment of amyloid-β (Aβ)-related diseases, mainly on Alzheimer's disease (AD). However, these nanomaterials have limitations. How GO is beneficial to eliminate Aβ burden, and its physiological function in Aβ-related diseases, still needs to be investigated. Moreover, postoperative cognitive dysfunction (POCD) is an Aβ-related common central nervous system complication, however, nanomedicine treatment is lacking.Methods: To evaluate the effects of GO on Aβ levels, HEK293T-APP-GFP and SHSY5Y-APP-GFP cells are established. Intramedullary fixation surgery for tibial fractures under inhalation anesthesia is used to induce dysfunction of fear memory in mice. The fear memory of mice is assessed by fear conditioning test.Results: GO treatment maximally alleviated Aβ levels by simultaneously reducing Aβ generation and enhancing its degradation through inhibiting β-cleavage of amyloid precursor protein (APP) and improving endosomal Aβ delivery to lysosomes, respectively. In postoperative mice, the hippocampal Aβ levels were significantly increased and hippocampal-dependent fear memory was impaired. However, GO administration significantly reduced hippocampal Aβ levels and improved the cognitive function of the postoperative mice.Conclusion: GO improves fear memory of postoperative mice by maximally alleviating Aβ accumulation, providing new evidence for the application of GO-based nanomedicines in Aβ-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.