Abstract
In this study, Typhonium giganteum containing dual-function nanofibers composed of poly(butylene carbonate), polylactic acid, and graphene oxide (PBC/PLA/GO) were successfully fabricated by electrospinning. The results from thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) indicate that no interactions occurred between PBC and PLA. The nanofiber microstructure upon which graphene oxide was evenly distributed was studied by scanning electron microscopy (SEM) and showed good silk properties. The nanofibers can be used as a drug carrier since loaded Typhonium giganteum fibers possess excellent biocompatibility. Such nanofibers are effective in inhibiting the proliferation of A549 lung cancer cells, and thus they have potential for replacing chemotherapy-based treatments of lung cancer. In addition, the PBC/PLA/GO nanofibers degrade in physiological and natural environments, which is an important feature when engineering tissues and environment-friendly materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.