Abstract

The nitride films with high indium (In) composition play a crucial role in the fabrication of In-rich InGaN-basedoptoelectronic devices. However, a major limitation is In incorporation requiring a low temperature during growth at the expense of nitride dissociation. Here, to overcome this limitation, a strain-modulated growth method, namely the graphene (Gr)-nanorod (NR) enhanced quasi-van der Waals epitaxy, is proposed to increase the In composition in InGaN alloy. The lattice transparency of Gr enables constraint of in-plane orientation of nitride film and epitaxial relationships at the heterointerface. The Gr interlayer together with NRs buffer layer substantially reduces the stress of the GaN film by 74.4%, from 0.9 to 0.23GPa, and thus increases the In incorporation by 30.7%. The first principles calculations confirm that the release of strain accounts for the dramatic improvement. The photoluminescence peak of multiple quantum wells shifts from 461 to 497nm and the functionally small-sized cyan light-emitting diodes of 7×9mil2 are demonstrated. These findings provide an efficient approach for the growth of In-rich InGaN film and extend the applications of nitrides in advanced optoelectronic, photovoltaic, and thermoelectric devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.