Abstract

Graphene, which is a single layer of carbon atoms assembled in a honeycomb lattice, has recently attracted significant attention, primarily due to its extraordinary electronic properties. In fact, its photonic properties are not less exciting. Graphene interacts with light strongly from ultraviolet to far infrared, and such interaction is tunable by electric field. Moreover, although graphene itself is gapless, a direct, tunable bandgap can be created by breaking its intrinsic crystallographic symmetry. These unique properties make graphene a promising candidate for various light detection, manipulation, and generation applications in an ultra-wide operational wavelength range. In this paper, we first discuss a few possible photonic applications based on the exceptional photonic properties of graphene, followed by detailed presentation on graphene photodetectors. Finally, two major future directions on graphene nanophotonic research will be covered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.