Abstract

A versatile graphene coated glass microswimmer displayed directed motions under the influence of applied electric field, chemical potential gradient and external magnetic field. The directed chemical locomotion took place from the region of lower to higher pH with speed ∼13 body lengths per second due to asymmetric catalytic decomposition of dilute hydrogen peroxide across the motor surface. The negative surface potential of graphene coated motor developed an electrical double layer in an alkaline medium which in turn engendered electrophoretic mobility towards anode when the external electrostatic field was applied. Inclusion of sparsely populated ferromagnetic iron nanoparticles on the surface of the motor offered the magnetic remote control on the motion. The coupled in situ and external controls enabled the motor to develop complex motions in diverse open and confined environments. For example, the motor could approach, pick-up, tow, and release a heavy cargo inside microchannel. Remarkably, the motor (∼67μg) could successfully drive out a ∼1000 times heavier payload (∼0.67mg) displaying the ability to overcome the drag force of ∼2619pN with the help of coupled in situ and remote guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.