Abstract

A simple and inexpensive method for the production of graphene-based masterbatch via polymer-assisted shear exfoliation of graphite in water was comprehensively investigated. In detail, a modified polyvinyl alcohol (mPVOH) characterized by surface energy comparable with that of graphene was used as surfactant for the production of graphene-like particles. The proposed approach allowed a yield in graphene-like particles higher than that obtained by using common surfactants, along with a narrower size distribution. A mPVOH-masterbatch containing 4.38wt% of graphene-like particles was produced by removing the aqueous solvent from a dispersion and directly used for production of polymer nanocomposites by melt processing. Films prepared by blending the masterbatch with polyvinyl alcohol in order to have a graphene-like particles content equal to 0.3wt% showed a 78% reduction in water permeability and a 48% increase in storage modulus as compared with pristine polymers. Improved barrier properties were also observed for polylactic acid (PLA) and low-density polyethylene (LDPE)-based composite films, whereas an increment of about 520% in the storage modulus was observed for the composite obtained with PLA. The obtained results are very relevant and the proposed process will open up a new pathway for using graphene-based masterbatch in the packaging industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.