Abstract

Big data applications increasingly rely on the analysis of large graphs. In order to analyze and process the large graphs with high cost efficiency, researchers have developed a number of out-of-core graph processing systems in recent years based on just one commodity computer. On the other hand, with the rapidly growing need of analyzing graphs in the real-world, graph processing systems have to efficiently handle massive concurrent graph processing (CGP) jobs. Unfortunately, due to the inherent design for single graph processing job, existing out-of-core graph processing systems usually incur redundant data accesses and storage and severe competition of I/O bandwidth when handling the CGP jobs, thus leading to very long waiting time experienced by users for the computing results. In this paper, we propose an I/O-efficient out-of-core graph processing system, GraphCP, to support the processing of CGP jobs. GraphCP proposes a benefit-aware sharing execution model that shares the I/O access and processing of graph data among the CGP jobs and adaptively schedules the loading of graph data, which efficiently overcomes above challenges faced by existing out-of-core graph processing systems. In addition, GraphCP organizes the graph data with a Source-Sorted Sub-Block graph representation for better processing capacity and I/O access locality. Extensive evaluation results show that GraphCP is 10.3x and 4.6x faster than two state-of-the-art out-of-core graph processing systems GridGraph and GraphZ respectively, and 2.1x faster than a CGP-oriented graph processing system Seraph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.