Abstract

The increasing CO2 level is a critical concern and suitable materials are needed to capture such gases from the environment. While experimental and conventional computational methods are useful in finding such materials, they are usually slow and there is a need to expedite such processes. We use Atomistic Line Graph Neural Network (ALIGNN) method to predict CO2 adsorption in metal organic frameworks (MOF), which are known for their high functional tunability. We train ALIGNN models for hypothetical MOF (hMOF) database with 137953 MOFs with grand canonical Monte Carlo (GCMC) based CO2 adsorption isotherms. We develop high accuracy and fast models for pre-screening applications. We apply the trained model on CoREMOF database and computationally rank them for experimental synthesis. In addition to the CO2 adsorption isotherm, we also train models for electronic bandgaps, surface area, void fraction, lowest cavity diameter, and pore limiting diameter, and illustrate the strength and limitation of such graph neural network models. For a few candidate MOFs we carry out GCMC calculations to evaluate the deep-learning (DL) predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.