Abstract
Recently, cybercrimes that exploit the anonymity of blockchain are increasing. They steal blockchain users' assets, threaten the network's reliability, and destabilize the blockchain network. Therefore, it is necessary to detect blockchain cybercriminal accounts to protect users' assets and sustain the blockchain ecosystem. Many studies have been conducted to detect cybercriminal accounts in the blockchain network. They represented blockchain transaction records as homogeneous transaction graphs that have a multi-edge. They also adopted graph learning algorithms to analyze transaction graphs. However, most graph learning algorithms are not efficient in multi-edge graphs, and homogeneous graphs ignore the heterogeneity of the blockchain network. In this paper, we propose a novel heterogeneous graph structure called an account-transaction graph, ATGraph. ATGraph represents a multi-edge as single edges by considering transactions as nodes. It allows graph learning more efficiently by eliminating multi-edges. Moreover, we compare the performance of ATGraph with homogeneous transaction graphs in various graph learning algorithms. The experimental results demonstrate that the detection performance using ATGraph as input outperforms that using homogeneous graphs as the input by up to 0.2 AUROC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.