Abstract
Bayesian phylogeographic methods simultaneously integrate geographical and evolutionary modelling, and have demonstrated value in assessing spatial spread patterns of measurably evolving organisms. We improve on existing phylogeographic methods by combining information from multiple phylogeographic datasets in a hierarchical setting. Consider N exchangeable datasets or strata consisting of viral sequences and locations, each evolving along its own phylogenetic tree and according to a conditionally independent geographical process. At the hierarchical level, a random graph summarizes the overall dispersion process by informing which migration rates between sampling locations are likely to be relevant in the strata. This approach provides an efficient and improved framework for analysing inherently hierarchical datasets. We first examine the evolutionary history of multiple serotypes of dengue virus in the Americas to showcase our method. Additionally, we explore an application to intrahost HIV evolution across multiple patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.