Abstract

Abstract In this paper, we present a general framework to estimate the network entropy that is represented by means of an undirected graph and subsequently employ this framework for graph classification tasks. The proposed framework is based on local information functionals which are defined using induced connected subgraphs of different sizes. These induced subgraphs are termed graphlets. Specifically, we extract the set of all graphlets of a specific sizes and compute the graph entropy using our proposed framework. To classify the network into different categories, we construct a feature vector whose components are obtained by computing entropies of different graphlet sizes. We apply the proposed framework to two different tasks, namely view-based object recognition and biomedical datasets with binary outcomes classification. Finally, we report and compare the classification accuracies of the proposed method and compare against some of the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.