Abstract

AbstractTo solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.