Abstract
Experimental mouse chimeras were used to determine the site(s) of gene action in the weaver mutant cerebellum. Chimeras containing mixtures of heterozygous weaver (wv/+) and non-weaver (+/+) cells were produced by the standard embryo aggregation technique. The non-weaver component of the chimera was chosen so that Purkinje cells or granule cells could be distinguished histologically from weaver Purkinje or granule cells. Levels of beta-glucuronidase activity were used to mark Purkinje cells, with the weaver strain having a high beta-glucuronidase activity, while the non-weaver strain had low beta-glucuronidase activity. The increased centralized clumping of heterochromatin in ichthyosis (ic) mutant mice compared to non-ic mice was used to mark granule cell populations. In the weaver chimera, there was a decreased cerebellar size, decreased numbers of Purkinje and granule cells, and increased ectopic Purkinje and granule cells compared to non-weaver, control mice. With the glucuronidase cell marker, it was found that there was no correlation between ectopia and genotype; that is, genetically normal cells, as well as weaver cells, were found in ectopic positions. Thus, the weaver gene acts extrinsic to the Purkinje cells in creating the ectopia characteristic of heterozygous weaver mutants. Analysis of the ectopic granule cells, however, revealed that 100% of the ectopic granule cells were from the weaver component of the chimera. Thus, the weaver gene intrinsically affects granule cells in causing ectopia. Other hypothetical sites of gene action would produce a genetically mixed population of ectopic granule cells, which was not the case in this study. These findings are discussed in relation to other abnormalities in the heterozygous weaver mutant and in regard to the Bergmann glia and homozygous mutant. Finally, speculations on the nature of the granule cell deficit are discussed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.