Abstract

There is theoretical and observational evidence that asteroids and comets are conglomerations of particles ranging in size from dust grains to boulders. It is well known that energy added to such systems is dissipated by friction, plasticity and fracture. In addition to these physical phenomena, we find that energy can be dissipated in the form of particle kinetic energy due to random velocity distributions. ‘Dissipation’ in this manner is measured by what is called a granular temperature owing to its similarities with kinetic gas theory. This work has implications on our understanding of the growth of asteroids and comets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.