Abstract

Ferric hydroxide (FHO), which has high phosphate adsorption capacity, was prepared by precipitation at industrial scale and then fabricated via the drum granulation method with cross-linked poly(vinyl alcohol) as the binder. The optimum binder/FHO powder ratio was 0.6 for producing a granular adsorbent with a high phosphate adsorption capacity and stability. The Langmuir maximum adsorption capacities of powder and granular FHOs were 74.07 mg g⁻¹ and 56.18 mg g(-1) at pH 7.0 ± 0.2, respectively, which were higher than those of other reported phosphate adsorbents under neutral or acidic conditions. Phosphate-loaded granular FHO could be regenerated by NaOH solution. Columns containing the granular FHO were used for phosphate removal from ozonated secondary effluents of a municipal wastewater treatment plant at space velocity (SV) of 2 and 5 h⁻¹. During more than 2 months' operation, the average removal percentage of PO(4)(3-) was more than 90% and the turbidity and concentration of CODMn in the effluents were lower than in the influents. In addition, energy dispersive X-ray results suggested that active sites inside the granular FHO were available for phosphate removal. The results demonstrated that granular FHO can be applied as an assist technology for phosphate removal from secondary effluents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.