Abstract

We solve a model of polymers represented by self-avoiding walks on a lattice, which may visit the same site up to three times in the grand-canonical formalism on the Bethe lattice. This may be a model for the collapse transition of polymers where only interactions between monomers at the same site are considered. The phase diagram of the model is very rich, displaying coexistence and critical surfaces, critical, critical end point, and tricritical lines, as well as a multicritical point. From the grand-canonical results, we present an argument to obtain the properties of the model in the canonical ensemble, and compare our results with simulations in the literature. We do actually find extended and collapsed phases, but the transition between them, composed by a line of critical end points and a line of tricritical points, separated by the multicritical point, is always continuous. This result is at variance with the simulations for the model, which suggest that part of the line should be a discontinuous transition. Finally, we discuss the connection of the present model with the standard model for the collapse of polymers (self-avoiding, self-attracting walks), where the transition between the extended and collapsed phases is a tricritical point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.