Abstract

The leaves of higher plants develop distinct cell types along their adaxial-abaxial (dorsal-ventral) axes. Interaction between leaf primordium cells with adaxial and abaxial identities is necessary for lateral growth of the developing leaf blade. We show that the growth and asymmetry of leaves in Antirrhinum majus involves the related YABBY transcription factors GRAMINIFOLIA (GRAM) and PROLONGATA (PROL). GRAM is expressed in abaxial margins of organ primordia where it promotes lateral growth and abaxial cell fate. GRAM, however, is not needed for abaxial fate in the absence of adaxial cell specification, suggesting that it promotes abaxial fate by excluding adaxial identity. Although GRAM expression is abaxially restricted, it functions redundantly with its abaxially expressed paralogue, PROL, and with the ubiquitously expressed PHANTASTICA gene to promote adaxial identity via intercellular signalling. This non cell-autonomous behaviour is consistent with the ability of GRAM in only the abaxial most cell layer to direct normal development of more adaxial cells. The contrasting roles of GRAM in promoting and inhibiting adaxial identity might serve to reinforce and maintain the distinction between adaxial and abaxial domains in the growing leaf primordium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.