Abstract

Scale-up criteria of laser ablation in the liquid phase with nanosecond pulses is studied for efficient generation of pure ceramic nanoparticles in an aqueous environment. Besides high laser fluence and low height of the applied liquid layer, specific pulse overlap and defined laser repetition rate are required for significant enhancement in nanoparticle productivity. The ablation rate increases by 350% by reducing the liquid film from 8 mm to 2.5 mm owing to reduced absorption and scattering of the incident laser beam by previously ablated nanoparticles. The controlled interpulse distance yields a further increase in material removal rate by another 300% compared to machining in the pulse overlap mode. The residual cavitation bubble from the previous laser pulse and the dispersed nanoparticle interaction with the following laser pulse and optimized temperature gradient in the lattice of the target are assumed to alter productivity. This hypothesis is confirmed by varying the repetition rate with equal la...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.