Abstract
Bandwidth parameter estimation in univariate Kernel Density Estimation has traditionally two approaches. Rule(s)-of-Thumb (ROT) achieve ‘quick and dirty’ estimations with some specific assumption for an unknown density. More accurate solve-the-equation-plug-in (STEPI) rules have almost no direct assumption for the unknown density but demand high computation. This article derives a balancing third approach. Extending an assumption of Gaussianity for the unknown density to be estimated in \textit{normal reference} ROT (NRROT) to near Gaussianity, and then expressing the density using Gram-Charlier A (GCA) series to minimize the asymptotic mean integrated square error, it derives GCA series based Extended ROT (GCAExROT). The performance analysis using the simulated and the real datasets suggests to replace NRROT by a modified GCAExROT rule achieving a balancing performance by accuracy nearer to STEPI rules at computation nearer to NRROT, specifically at small samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.