Abstract

The study presented describes the simulation procedure and methodology used to develop two models for predicting recrystallized grain size in Alloy 718 billet. To simulate multiple pass forging of billet, controlled, high temperature compression testing was used to apply alternate deformation and dwell cycles to Alloy 718 specimens. Grain size obtained by simulation was found to be in excellent agreement with grain size from forged billet when cooling rate was included. The study also revealed that strain per pass and forging temperature were the predominant factors in controlling the recrystallized grain size. Both models were found to accurately predict the recrystallized grain size obtained by compression tests performed at super-solvus temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.