Abstract

Biaxial compression tests with the same specimen size and different maximum grain sizes were simulated for coarse-grained soils using the discrete element method to study the influence of grain size on the mechanical properties and force chain. The maximum grain sizes were 40, 20, 10, and 5 mm, respectively. The grading with self-similar fractal structure in mass is designed to ensure the same pore structure for soils. The shear strength increased with the increase in maximum grain size. Evident increase in shear strength and significant size effect were observed when the ratio of the specimen diameter to maximum grain size was less than five. The shear dilation of coarse-grained soils increases with the increase in maximum grain size. The contact force distribution was uniform when maximum grain size was small but tends to be uneven with the increase in maximum grain size, thereby causing the increase in shear strength by stable strong force chains. This finding demonstrates size effect on the mechanical properties and force chain of cohesionless coarse-grained soils under the biaxial compression condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.