Abstract

Abstract Precession illumination hollow cone dark field (PI-HCDF) transmission electron microscopy (TEM) provides high contrast multi-beam dark field images, which are suitable for effective and robust grain size measurements in nano-scale polycrystalline aggregates. Precession illumination with slightly converged electron beam probes and precession angles up to 3° has been produced using a computer-controlled system using a JEOL JEM 2000FX TEM instrument. Theoretical and practical aspects of the experimental technique are discussed using example precession illumination hollow cone diffraction patterns from single crystalline NiAl and the importance of selecting the appropriate precession angle for PI-HCDF image formation and interpretation is described. Results obtained for precession illumination are compared with those of conventional parallel beam illumination experiments. Nanocrystalline Al has been used to evaluate the influence of the precession angle on PI-HCDF image contrast with a focus on grain size analysis. PI-HCDF imaging has been applied for grain size measurements in regions of a nanocrystalline Al thin film adjacent to the edge of a pulsed laser melted and rapidly solidified region and determined the dimensions of a heat-affected zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.