Abstract

ZnO additions to BaTiO3 have been studied in order to determine the role of this dopant on sintering and microstructure development. As a consequence of a better initial dopant distribution, samples doped with 0.1 wt% zinc stearate show homogeneous fine‐grained microstructure, while a doping level of 0.5 wt% solid ZnO is necessary to reach the same effect. When solid ZnO is used as the dopant precursor, ZnO is redistributed among the BaTiO3 particles during heating. Since no liquid formation has been detected for temperatures below 1400°C in the system BaTiO3‐ZnO, it is proposed that dopant redistribution takes place by vapor‐phase transport and grain boundary diffusion. Shrinkage and porosimetry measurements have shown that grain growth is inhibited during the first step of sintering for the doped samples. STEM‐EDX analysis revealed that solid solubility of ZnO into the BaTiO3 lattice is very low, being strongly segregated at the grain boundaries. Grain growth control is attributed to a decrease in grain boundary mobility due to solute drag. Because of its effectiveness in controlling grain growth, ZnO appears to be an attractive additive for BaTiO3 dielectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.