Abstract

Grain boundary carbide precipitation gives rise to a dramatic decrease in creep rates compared with those of a single phase alloy. The high stress exponent (n=7) and creep activation energy (Q C > Q sd) have been found due to these intergranular carbides, indicating that they both increase creep resistance and change creep characteristics of alloys. The model present here rationalizes the observed behavior in single phase and two phase alloys with grain boundary carbides by a unified power law equation involving boundary obstacle stress. The predictions of this model are in close agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.