Abstract

The presence of grain boundaries in polycrystalline materials affects the materials properties and performance. Recently it has been realized that boundaries can be manipulated to give better properties, and the design and control of grain boundaries is now an area of strong research interest in the search for high performance engineering materials. Grain boundaries can be classified using the Coincident Site Lattice Model (CSL), which defines the periodicity, i.e., the degree of fit between the two lattices which constitute the boundary. Using this model it is possible to divide boundaries into categories: low angle (up to 15{degree} misorientation), CSL and random i.e., high angle non-CSL. Some CSL boundaries have been shown to have special properties: an example from recent research in the same program as that currently reported has shown that twin boundaries ({Sigma} = 3 in CSL notation) in High Nitrogen Austenitic Stainless Steels do not favor the formation of Cr{sub 2}N precipitates. The research presented here examines grain boundary inclinations of surface grains in austenitic steel specimens which have been isothermally aged at higher 700 C or 800 C. Grain boundary plane crystallography has also been obtained for the 800 C aged sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.