Abstract

Large-scale deployment of proton exchange membranes water electrolysis (PEM-WE) requires a substantial reduction in usage of platinum group metals (PGMs) as indispensable electrocatalyst for cathodic hydrogen evolution reaction (HER). Ultra-fine PGMs nanocatalysts possess abundant catalytic sites at lower loading, but usually exhibit reduced stability in long-term operations under corrosive acidic environments. Here we report grafting the ultra-fine PtRu crystalline nanoalloys with PtxRuySez "amorphous skin" (c-PtRu@a-PtxRuySez) by in situ atomic layer selenation to simultaneously improve catalytic activity and stability. We found that the c-PtRu@a-PtxRuySez-1 with ~0.6 nm thickness amorphous skin achieved an ultra-high mass activity of 26.7 A mg-1 Pt+Ru at -0.07 V as well as a state-of-the-art durability maintained for at least 1000 h at -10 mA cm-2 and 550 h at -100 mA⋅cm-2 for acid HER. Experimental and theoretical investigations suggested that the amorphous skin not only improved the electrochemical accessibility of the catalyst surface and increasing the intrinsic activity of the catalytic sites, but also mitigated the dissolution/diffusion of the active species, thus resulting in improved catalytic activity and stability under acidic electrolyte. This work demonstrates a direction of designing ultra-fine PGMs electrocatalysts both with high utilization and robust durability, offers an in situ "amorphous skin" engineering strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.