Abstract

The chemical durability is a critical issue to proton exchange membranes (PEMs) for using as the electrolyte in proton exchange membrane fuel cells (PEMFCs). Herein, chemically stable membranes were prepared by grafting organic free radical scavengers (R) including 2-mercapto-1-methylimidazole (MIm), 3-mercapto-1,2,4-triazole (MTz) and 2-mercaptobenzimidazole (BIm) onto backbones of polyarylethersulfone (PAES), respectively. Having a phosphoric acid (PA) doping level of around 200 wt%, the PAES-MIm and PAES-MTz membranes exhibit, separately, anhydrous proton conductivities of 78.3 and 63.3 mS cm−1 at 180 °C, tensile stress at break of 7.8 and 9.4 MPa at room temperature, and a peak power density of 423 mW cm−2 and 358 mW cm−2 at 160 °C with a fuel cell fueling with non-humidified gases of H2 and O2. The properties of the prepared PAES-MIm and PAES-MTz membranes with and without performing the Fenton tests were all investigated on tensile stress, methanol permeability, anhydrous proton conductivity, and polarization curves of single fuel cells, respectively. The results indicate that the grafted free radical scavengers significantly enhanced the chemical stability and retarded the degradation of the PAES-R membranes. After suffered the Fenton test under harsh conditions (H2O2, 3 wt%, Fe2+, 4 ppm at 68 °C) for 60 and 100 h, a peak power density of 320 and 291 mW cm−2 is still achieved at 140 °C by the acid doped PAES-MIm membranes, respectively. Characterizations on the morphology by scanning electron microscope (SEM), and structure by Raman spectroscopy of the prepared membranes were made as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.