Abstract
To enhance the interfacial interaction in alumina nanoparticles filled polymer composites, an effective surface modification method was developed by grafting polystyrene and polyacrylamide onto the particles. That is, the alumina surface was firstly treated with silane, followed by radical grafting polymerization in aqueous or non-aqueous systems. Results of infrared spectroscopy and dispersiveness in solvents demonstrated that the desired polymer chains have been covalently bonded to the surface of the alumina particles. They also greatly changed their surface characteristics. In addition, effects of polymerization conditions, including ways of monomer feeding, concentrations of monomer and initiator, and reaction time, on the grafting reaction were presented. It was found that the growing polymer radicals and/or the grafted polymer chains had a blocking effect on the diffusion of radicals or monomers towards the surface of nanoalumina. This was due to the fact that the interaction between the solvent and the grafted polymers was weaker than that between the grafted polymers and the nanoparticles. 2002 Elsevier Science Ltd. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.