Abstract

The dynamic mechanical strength of the extracellular matrix (ECM) has been demonstrated to play important role in determining the cell behavior. Growing evidences suggest that the gradual stiffening process of the matrix is particularly decisive during tissue development and wound healing. Herein, a novel strategy to prepare hydrogels with gradually enhanced mechanical strength is provided. Such hydrogels could maintain the dynamic properties at their initial states, such as self-healing and shear-thinning properties. With subsequent slow covalent crosslinking, the stability and mechanical properties would be gradually improved. This method is useful for sequence programmability and oxidation strategies, which has provided an alternated tool to study cell behavior during dynamic increase in mechanical strength of ECM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.