Abstract

The radial Schrödinger equation for a spherically symmetric potential can be regarded as a one-dimensional classical harmonic oscillator with a time-dependent spring constant. For solving classical dynamics problems, symplectic integrators are well known for their excellent conservation properties. The class of gradient symplectic algorithms is particularly suited for solving harmonic-oscillator dynamics. By use of Suzuki’s rule [Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 69, 161 (1993)] for decomposing time-ordered operators, these algorithms can be easily applied to the Schrödinger equation. We demonstrate the power of this class of gradient algorithms by solving the spectrum of highly singular radial potentials using Killingbeck’s method [J. Phys. A 18, 245 (1985)] of backward Newton-Ralphson iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.