Abstract
Let [Formula: see text] be a ring, [Formula: see text] a class of [Formula: see text]-modules and [Formula: see text] an integer. We introduce the concepts of Gorenstein [Formula: see text]-[Formula: see text]-injective and [Formula: see text]-[Formula: see text]-flat modules via special finitely presented modules. Besides, we obtain some equivalent properties of these modules on [Formula: see text]-[Formula: see text]-coherent rings. Then we investigate the relations among Gorenstein [Formula: see text]-[Formula: see text]-injective, [Formula: see text]-[Formula: see text]-flat, injective and flat modules on [Formula: see text]-[Formula: see text]-rings (i.e., self [Formula: see text]-[Formula: see text]-injective and [Formula: see text]-[Formula: see text]-coherent rings). Several known results are generalized to this new context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.