Abstract
The Pearson chi-squared statistic or the deviance statistic is widely used in assessing the goodness-of-fit of the generalized linear models. But these statistics are not proper in the situation of continuous explanatory variables which results in the sparseness of cell frequencies. We propose a goodness-of-fit test statistic for the cumulative logit models with ordinal responses. We consider the grouping of a dataset based on the ordinal scores obtained by fitting the assumed model. We propose the Pearson chi-squared type test statistic, which is obtained from the cross-classified table formed by the subgroups of ordinal scores and the response categories. Because the limiting distribution of the chi-squared type statistic is intractable we suggest the parametric bootstrap testing procedure to approximate the distribution of the proposed test statistic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications for Statistical Applications and Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.