Abstract

We consider goodness-of-fit testing for multivariate stable distributions. The proposed test statistics exploit a characterizing property of the characteristic function of these distributions and are consistent under some conditions. The asymptotic distribution is derived under the null hypothesis as well as under local alternatives. Conditions for an asymptotic null distribution free of parameters and for affine invariance are provided. Computational issues are discussed in detail and simulations show that with proper choice of the user parameters involved, the new tests lead to powerful omnibus procedures for the problem at hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.