Abstract

Marine pleustonic species such as the hydrozoans Velella velella and Physalia physalis, are known to drift in the world's oceans driven by winds, currents and tides. Here we present the first chemotaxonomic characterization, based on the fatty acid (FA) profile, of these two charismatic oceanic species that thrive in the interface layer between air and the water column in adult stages. Moreover, we compared their FA profiles with those from other representative cnidarian orders (Rhizostomeae, Anthomedusae, Siphonophorae, Alcyonacea, Scleractinia, Helioporacea and Pennatulacea). Velella velella and P. physalis mainly differed in the presence of symbiotic dinoflagellates markers (18:3n-6, 18:4n-3 and 20:5n-3 polyunsaturated FAs), present in higher percentage in the former, and bacterial markers (odd-numbered, branched and 18:1n-7 FAs), which were more representative in the latter. When comparing these species' FA profiles with the ones of other cnidarians orders, the presence/absence of endosymbionts and of specific FAs (tetracosapentaenoic and tetracosahexaenoic acids) as well as the latitudinal habitats were the main drivers for the distinction between groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.