Abstract

Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.

Highlights

  • Leishmania parasites cause a spectrum of diseases in humans, ranging from localized cutaneous lesions to disseminated mucocutaneous and lethal visceral infections

  • Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes expressed in many eukaryotes, ranging from single-celled parasites to mammals

  • In this study we have investigated the function of two NTPDases, termed LmNTPDase1 and LmNTPDase2, in Leishmania major parasites

Read more

Summary

Introduction

Leishmania parasites cause a spectrum of diseases in humans, ranging from localized cutaneous lesions to disseminated mucocutaneous and lethal visceral infections. Leishmania parasites develop as extracellular promastigote stages in the digestive tract of the sandfly vector [2]. Following injection into the mammalian host during a sandfly bloodmeal, promastigotes are phagocytosed by a range of host cells (neutrophils, dendritic cells and macrophages) before differentiating to obligate intracellular amastigote stages that primarily proliferate within the phagolysosome compartment of macrophages. A number of surface molecules, including an abundant lipophosphoglycan (LPG) and several GPI-anchored glycoproteins, have been shown to be important for promastigote survival during these initial stages of infection [3]. LPG is thought to form a continuous surface glycocalyx that protects the promastigote stages of most Leishmania species from complement-mediated lysis and macrophage-induced oxidative stress during phagocytosis [3,4,5].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.