Abstract

Noble-metal-based catalysts supported on silica (Au/SiO2, Pd/SiO2 and Au–Pd/SiO2) were prepared by the sol–gel method and were evaluated in the steam reforming of ethanol for hydrogen production. The catalysts were characterized by N2 physisorption (BET/BJH methods), X-ray diffraction, temperature programmed reduction analysis, H2 chemisorption, atomic absorption spectrophotometry and Raman spectroscopy. The structural characterization of the Au- and Pd-containing catalysts after calcination showed that the solids are predominantly formed by Au0, Pd0 and PdO species and was observed that the metallic Pd dispersion diminished in the presence of Au0. The results revealed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. The Pd/SiO2 catalyst showed the best performance among the catalysts tested at the highest reaction temperature (600 °C) due to the more effective action of the metallic active phase, which covers a greater area in this sample. At this same reaction temperature, the Au–Pd/SiO2 catalyst showed a significant deactivation, probably due to the lower Pd dispersion presented by this catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.