Abstract

Photothermal therapy (PTT), photodynamic therapy (PDT), and chemodynamic therapy (CDT) can cause cancer cell death through an immunogenic process. However, the study of second near-infrared window (NIR-II)-triggered PTT and PDT combined with CDT to induce an immune response has not been recently reported. Here, we integrated gold nanobipyramids and copper sulfide in a core/shell architecture (AuNBP@CuS). The material displays both photodynamic and photothermal properties under irradiation with a NIR-II laser. The released Cu2+ from CuS under an acidic tumor microenvironment can be converted to Cu+ by glutathione following a Fenton-like reaction with hydrogen peroxide to generate highly toxic hydroxyl radicals in the tumor region. Both in vitro and in vivo results demonstrated that such multifunctional nanoplatforms could achieve enhanced efficiency for image-guided tumor suppression based on the NIR-II photo/chemodynamic therapy. We found that damage-associated molecular pattern molecules such as adenosine triphosphate, pre-apoptotic calreticulin, and high mobility group box-1 in dying cells induced by the NIR-II photo/chemodynamic therapy could simultaneously trigger adaptive immune responses. This is the first report revealing that NIR-II photo/chemodynamic therapy based on AuNBP@CuS had promising performance on tumor suppressor with an effective immunogenic cell death process. STATEMENT OF SIGNIFICANCE: 1. AuNBP@CuS displays both NIR-II photodynamic and photothermal properties. 2. Cu+ following a Fenton-like reaction to generate highly toxic hydroxyl radicals. 3. The NIR-II photo/chemodynamic therapy can trigger adaptive immune responses. 4. Such multifunctional nanoplatforms could achieve enhanced efficiency for tumor suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.