Abstract

A subject of great interest and important investments by governments, navigation system companies and street management authorities is highway safety. In this context, an important role is played by applications designed to warn drivers of upcoming dangers. An example is vehicular accident warning systems, which advertise accident events to approaching vehicles. The effectiveness of currently in use vehicular accident warning systems can be jeopardized by their: (a) inability to provide an accident warning to the closest approaching vehicles; and, (b) high delays in advertising an event. In fact, such systems are unable to reach the vehicles that are closest to an accident site due to the absence of any deployed automatic detection and broadcast mechanisms. The future deployment of Vehicular Ad hoc Networks (VANETs) can fill this gap. By leveraging on the distributed nature of ad hoc networks, accident warning systems can rapidly alert the vehicles which most risk their involvement in a crash. To reach this goal, VANET-based accident warning systems require the design of efficient broadcast algorithms. A number of solutions have been proposed in the past few years. However, no such proposals, to the best of our knowledge, assume realistic wireless propagation scenarios. The scope of this paper is to present an optimal distributed algorithm, working at the application layer, for the broadcast of safety messages in VANETs. Optimality, in terms of delay, is achieved in unidimensional highway scenarios and under realistic wireless propagation assumptions. This is the only algorithm, to this date, capable of reaching all vehicles with the minimum number of transmissions within a realistic setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.