Abstract

The structure of oxide-supported metal nanoclusters plays an essential role in their sharply enhanced catalytic activity over that of bulk metals. Simulations provide the atomic-scale resolution needed to understand these systems. However, the sensitive mix of metal-metal and metal-support interactions, which govern their structure, puts stringent requirements on the method used, requiring calculations beyond standard density functional theory (DFT). The method of choice is coupled cluster theory [specifically CCSD(T)], but its computational cost has so far prevented its application to these systems. In this work, we showcase two approaches to make CCSD(T) accuracy readily achievable in oxide-supported nanoclusters. First, we leverage the SKZCAM protocol to provide the first benchmarks of oxide-supported nanoclusters, revealing that it is specifically metal-metal interactions that are challenging to capture with DFT. Second, we propose a CCSD(T) correction (ΔCC) to the metal-metal interaction errors in DFT, reaching accuracy comparable to that of the SKZCAM protocol at significantly lower cost. This approach forges a path toward studying larger systems at reliable accuracy, which we highlight by identifying a ground-state structure in agreement with experiments for Au20 on MgO, a challenging system where DFT models have yielded conflicting predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.