Abstract

This paper presents a methodology for evaluation of low-level image analysis methods, using binarization (two-level thresholding) as an example. Binarization of scanned gray scale images is the first step in most document image analysis systems. Selection of an appropriate binarization method for an input image domain is a difficult problem. Typically, a human expert evaluates the binarized images according to his/her visual criteria. However, to conduct an objective evaluation, one needs to investigate how well the subsequent image analysis steps will perform on the binarized image. We call this approach goal-directed evaluation, and it can be used to evaluate other low-level image processing methods as well. Our evaluation of binarization methods is in the context of digit recognition, so we define the performance of the character recognition module as the objective measure. Eleven different locally adaptive binarization methods were evaluated, and Niblack's method gave the best performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.