Abstract
Support vector machines (SVMs) are gaining much popularity as effective methods in machine learning. In pattern classification problems with two class sets, their basic idea is to find a maximal margin separating hyperplane which gives the greatest separation between the classes in a high dimensional feature space. However, the idea of maximal margin separation is not quite new: in 1960’s the multi-surface method (MSM) was suggested by Mangasarian. In 1980’s, linear classifiers using goal programming were developed extensively. This paper considers SVMs from a viewpoint of goal programming, and proposes a new method based on the total margin instead of the shortest distance between learning data and separating hyperplane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.