Abstract
This paper applies metric-based mesh adaptation methods to advection-dominated tracer transport modelling problems in two and three dimensions, using the finite element package Firedrake. In particular, the mesh adaptation methods considered are built upon goal-oriented estimates for the error incurred in evaluating a diagnostic quantity of interest (QoI). In the motivating example of modelling to support desalination plant outfall design, such a QoI could be the salinity at the plant inlet, which could be negatively impacted by the transport of brine from the plant’s outfall. Four approaches are considered, one of which yields isotropic meshes. The focus on advection-dominated problems means that flows are often anisotropic; thus, three anisotropic approaches are also considered. Meshes resulting from each of the four approaches yield solutions to the tracer transport problem which give better approximations to QoI values than uniform meshing, for a given mesh size. The methodology is validated using an existing 2D tracer transport test case with a known analytical solution. Goal-oriented meshes for an idealised time-dependent desalination outfall scenario are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.