Abstract

Graphene Oxide-Zinc Oxide (GO-ZnO) – a new nanomaterial that has queued the interest of researchers. Their intriguing promising physical and electrochemical features of electrode material have led to its widespread use in electrochemical sensor applications. GO-ZnO based nanomaterial were extensively exploited in the construction of electrochemical sensors due to their adaptability and distinct qualities. On understanding the structural role of these materials, their modification processes are critical for realizing their full potential. The advancement of technology on new concepts and strategies has revolutionized the field of sensor devices with high sensitivities and selectivity. These tools can test a range of contaminants quickly, accurately, and affordably while performing automated chemical analysis in complicated matrices. This paper highlights the electrochemical transducer surface for sensing various analytes and current research activity on GO-ZnO nanocomposite. Additionally, we talked about current developments in GO-ZnO nanostructured composites to identify relevant analytes (i.e., Nitrophenols, Antibiotic Drugs, Biomolecules). While being used in the laboratory, the majority of produced systems have proven to bring about excellent gains. Their monitoring application still has a long way to go before it is fixed due to problems like technological advancements and multifunctional strategies to get around the challenges for improving the sensing systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.