Abstract

Among the inertial navigation system (INS) devices used in land vehicle navigation (LVN), low-cost microelectromechanical systems (MEMS) inertial sensors have received more interest for bridging global navigation satellites systems (GNSS) signal failures because of their price and portability. Kalman filter (KF) based GNSS/INS integration has been widely used to provide a robust solution to the navigation. However, its prediction model cannot give satisfactory results in the presence of colored and variational noise. In order to achieve reliable and accurate positional solution for LVN in urban areas surrounded by skyscrapers or under dense foliage and tunnels, a novel model combining variational Bayesian adaptive Kalman smoother (VB-ACKS) as an alternative of KF and ensemble regularized extreme learning machine (ERELM) for bridging global positioning systems outages is proposed. The ERELM is applied to reduce the fluctuating performance of GNSS during an outage. We show that a well-organized collection of predictors using ensemble learning yields a more accurate positional result when compared with conventional artificial neural network (ANN) predictors. Experimental results show that the performance of VB-ACKS is more robust compared with KF solution, and the prediction of ERELM contains the smallest error compared with other ANN solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.